nREPL on… Chlorine?

When I started the Chlorine project, I just thought it would be great if I could target all Clojure-like REPLs that already exist but didn’t have tooling support. At the time, this would include Lumo and Plank, mostly. Also, Shadow-CLJS and Figwheel have some “clunky run-some-code-and-transform-in-cljs” way of working that simply didn’t click with me.

Now, almost a year later, Chlorine supports Clojure, ClojureScript (Shadow-CLJS, Lumo, Plank, or even over clj), ClojureCLR, Arcadia, Babashka, Clojerl (Clojure on Erlang) and Joker (Clojure on Go, also a linter). But the reality is that working with a pure Socket REPL is really hard – a socket REPL works exactly like a regular one, printing namespaces after each code, and so on. Also, there are some strange decisions on some REPLs, mostly likely ClojureScript (that is the second most used Clojure flavor), so things are not always easy. To put things in perspective, currently Chlorine uses 3 ways to evaluate code: It uses unrepl, that only works on Clojure, or uses internal APIs of shadow-cljs (that obviously only works for shadow-cljs), and for other implementations it uses a kind of a hack – it evaluates the code, inside a trycatch, and it returns a vector where the first element is a symbol in a specific format that Chlorine will understand and then link that with the response. This “hacky way” is currently being used for every other implementation except Clojure and Shadow-CLJS. Things work (autocomplete works too), but it is not pretty and sometimes have strange results.

As a matter of fact, I was already thinking about removing UNREPL (it’s really hard to implement new features on it, and some good ideas only work in theory – for example, the ability to evaluate long strings / collections and render only a part at a time aren’t that good with lots of edge-cases) and, to do it, I though about a better, non-hacky way to evaluate things on some Socket-REPLs (that, again, would only work on some REPLs – ClojureScript REPLs will probably never support “upgradable REPLs” because of the way they work) – the only thing that I had to understand is how to implement this “upgraded REPL”…

Then, recently, Babashka added an initial support for nREPL, with an insane low amount of lines. So, I’ve tried to implement a way to evaluate code over nREPL… and it was really simple to do it, using a npm library that already did it. But implementing like this meant that the user would need to know if the host/port to connect is a Socket REPL, or a nREPL (and the user does not know – lots of tools like lein and shadow-cljs show an nREPL port to be connected).
(more…)

REPL-Tooling Clients

Chlorine, Clover and Clematis are all implementations of the same library: REPL-Tooling. In this post I will show you how to create a new implementation of it in a way that’s completely disconnected from any editors, so you can grasp the general concepts.

Suppose I want to do an implementation for an editor that doesn’t run JavaScript – so it’ll connect by some kind of socket. In this example I’m going to use WebSockets because… why not?

We’re going to create a shadow-cljs node project and add repl-tooling as a dependency. We will also had some more dependencies: mostly ws for websockets and the same react libraries that we use for reagent (react, create-react-class and react-dom) – repl-tooling still needs reagent, and probably in the future I will split it into two different libraries (one for the REPL handling and other for the visual rendering part). This supposedly is not to much of a problem because ClojureScript compiler will probably remove these parts in the dead code elimination process anyway. So, our package.json file will just be like this:

{
  "name": "ws-repl",
  "devDependencies": {
    "shadow-cljs": "^2.8.83"
  },
  "dependencies": {
    "create-react-class": "^15.6.3",
    "install": "^0.13.0",
    "react": "^16.12.0",
    "react-dom": "^16.12.0",
    "ws": "^7.2.1"
  }
}

And our shadow-cljs.edn file:

{:source-paths ["src"]

 :dependencies [[repl-tooling "0.4.0"]]
 :builds {:node {:output-to "index.js"
                 :target :node-script
                 :main ws-repl.core/main}}}

The first step is when someone connects to the WebSocket. Then, we’ll just create a connection to the client, and send a list of supported commands – for now, is just the “connect” command:
(more…)

My 2019 retrospective

If I could say something about 2019, it would be: what a year!

It was probably one of the best years of my life, even with all the fears I had to face, the strength I had to find, and lots of other difficulties that are normal for every year.

The year began with a trip to Uruguay – Montevideo. The reason for that trip was something very different from what I am used to: it was to find if it was a good place to live. After that, my wife and I made two more trips for documentation, and probably by August, 2020, we’ll be leaving Brazil! This is a huge roadmap in my life, and I’ll probably write more about it later.

This was also a big year for open-source contributing: this was the year that Chlorine became popular, so I’ve been investing my time on it. It is wonderful and kinda scary to have a successful project (people start to rely on it to be working!), and it also taught me a lot about organizing projects – even personal ones. Chlorine also evolved a lot thanks for multiple contributors, and now I can easily recommend it as a real alternative to any other plug-in out there.

This was also the first year that I was invited to talk on meetups, instead of sending papers. On the total, I think there were about 4 invitations, two to explain functional programming on an university here in São Caetano / Brazil (where I live currently). Speaking of events…
(more…)

Ubiquitous interface – how to integrate things in Clojure

Inspired by this thread on Reddit, I decided to write a little bit about my experience integrating things in Clojure.

The first thing to understand is that Clojure have an ubiquitous interface: EDN. And it is important to understand what this means. In the beginning, I made this mistake of “Death By Specificity” on my now abandoned Relational project: to abstract things that don’t need to be abstracted.

But can we do even better? How about we de-abstract (concretize? Is this a real word?) things that are already abstracted?
(more…)

Strange decisions in Clojure – keyword inheritance

First, a disclaimer: the opinions on these posts are my own, and they reflect (for me) a design decision on the language that I don’t understand, specially considering other decisions that seems to contradict it. I also want to say that Clojure (and ClojureScript) is my favorite language, the one that I enjoy writing on my free time and professionally, so by no means this is a rant on the whole language!

Well, this is a new “series” on this blog: what is on the Clojure language that I don’t like, that I feel is out-of-place, and sometimes I can’t understand? In this first post, “keyword inheritance”. And what is that?

Clojure allows us to use derive to generate a “parent-child” inheritance against keywords. So, for example:

(isa? ::dog ::animal) ; => false
(derive ::dog ::animal)
(isa? ::dog ::animal) ; => true

This will change the way multimethods work too: so, for example, if derive is used and a multimethod expects an ::animal and you send a ::dog, it’ll use the implementation for ::animal:

(defmulti cry :type)
(defmethod cry ::animal [_] "Some animal crying")

(cry {:type ::wolf})
; Execution error (IllegalArgumentException) at user/eval152 (REPL:1).
; No method in multimethod 'cry' for dispatch value: :user/wolf
(cry {:type ::dog})
; => "Some animal crying"

(more…)

Introduction to Kafka with Clojure

Recently I was trying to study Kafka, but I didn’t find a single resource that would give me a quick introduction and hands-on experience with it and Clojure. So, I’m making my own here! Don’t expect a “too deep introduction” – this is just the quick-and-dirty introduction about the concepts, and then I’ll show some code examples in Clojure

Kafka is a messaging system similar to RabbitMQ and SQS. The great differential is that it’s faster than both solutions, and works very well in cluster mode. Installing Kafka locally is quite complicated so you probably will wants to use the docker-compose.yaml file below:

version: '2'
services:
  zookeeper:
    image: confluentinc/cp-zookeeper:5.3.1
    hostname: zookeeper
    container_name: zookeeper
    ports:
      - "2181:2181"
    environment:
      ZOOKEEPER_CLIENT_PORT: 2181
      ZOOKEEPER_TICK_TIME: 2000
  kafka:
    image: confluentinc/cp-enterprise-kafka:5.3.1
    hostname: broker
    container_name: broker
    depends_on:
      - zookeeper
    ports:
      - "9092:9092"
    environment:
      KAFKA_BROKER_ID: 1
      KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181'
      KAFKA_LISTENER_SECURITY_PROTOCOL_MAP: PLAINTEXT:PLAINTEXT,PLAINTEXT_HOST:PLAINTEXT
      KAFKA_ADVERTISED_LISTENERS: PLAINTEXT://broker:29092,PLAINTEXT_HOST://localhost:9092
      KAFKA_METRIC_REPORTERS: io.confluent.metrics.reporter.ConfluentMetricsReporter
      KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
      KAFKA_GROUP_INITIAL_REBALANCE_DELAY_MS: 0
      CONFLUENT_METRICS_REPORTER_BOOTSTRAP_SERVERS: broker:29092
      CONFLUENT_METRICS_REPORTER_ZOOKEEPER_CONNECT: zookeeper:2181
      CONFLUENT_METRICS_REPORTER_TOPIC_REPLICAS: 1
      CONFLUENT_METRICS_ENABLE: 'true'
      CONFLUENT_SUPPORT_CUSTOMER_ID: 'anonymous'

This file will create the Kafka broker (like a single node of the messaging) and will add Zookeeper (that will allow you to coordinate between different Kafkas, decide which node is the leader, and also participate on the node election when the leader goes down, and other things). You will connect into 9092 port, and then listen and send messages from there.
(more…)

Subtyping on functional languages

This is almost a new post on the Function SOLID series. It should be about the Liskov Substitution Princible, but before we talk about it it’s important to understand the concept of subtyping.

Subtyping in Dynamic languages like Clojure or in languages that do not have hierarchical typing like Haskell seems strange. But subtyping is not only a concept about object-oriented programming languages – it’s about restrictions, and the concept of variance. I’m going to try to explain both in this post

To begin with, we can say that a supertype is more generic than a subtype, but that’s not all. In truth, is all about properties that you can prove about a specific data. For example, if we use Clojure as a starting language you could say that the coll? is a property of maps and vectors, but vector? is a property that only applies to vectors. In practice, this means that coll? is a superclass of vector?.

(coll? []) ; => true
(coll? {}) ; => true

(vector? []) ; => true
(vector? {}) ; => false

(more…)

My last experience with Ruby

On my last job I tried to go back to Ruby programming language. Not really by choice – but just because it was a language and was familiar with, and my last two jobs in Clojure didn’t really work out for me (not because of the language, really). I even imagined that some things would be easier in Ruby, specially while working with relational databases (something I really did miss while I was working in the Clojure language).

At the time, in my opinion, Rails was still a great framework – maybe a little too complex. And I imagined that somehow there could be better ways of doing Ruby code that could use the best parts of Rails and avoid the worst (like ActiveRecord, for example, maybe even substitute it with Sequel or ROM).

No a year and a half later I’m back to Clojure – and I will probably never go back to Ruby. And the reason is quite simple: I was working with Ruby doing exactly the same code that I did about three years ago. Rails didn’t change that much, but still was a huge mess when you had to upgrade from one version to another. The same problems I had in the past kept happening again and again, and it felt like a huge step backwards for me.
(more…)

(check (my-code) => (needs :tests))

So, yesterday I made a talk (in Portuguese only, unfortunately) about the difficulties of testing Clojure and ClojureScript code. Specifically, I think the most problematic issue is the lack of “custom matcher libraries”, and how the default error messages are kinda bad and don’t help you identify the problems.

Then, on Clojurians’ #announcements Slack channel, I found that clojure.test Expectations library have a new version. So, why not integrate it on my Check library, and maybe continue developing it?

What is check?

Midje is too magic. Clojure.test is too little. Thinking about findind a “middle ground” I’ve started the “check” project, and I’m using it to test my personal projects like Chlorine, Clover, REPL-Tooling and Paprika. The problem is that, while the API is stable, but it still doesn’t do all the things I want.
(more…)