Chlorine is thriving!

When I started this project, I was experimenting with shadow-cljs to see if I would be able to make an Atom package that would auto reload, run tests on ClojureScript, and se how far could I push ClojureScript in an Atom package.

Now, some months later, I’m seeing the package being used by a bunch of people, and I even discovered some bugs in UNREPL! Now, on this post, I’ll discuss a little bit more in detail the design decisions and my vision on the future of the project.

Chlorine is a clojure and ClojureScript atom package. It connects to a socket repl (opened via lein, boot, clj, shadow-cljs, lumo, or even REBL) and then upgrades the repl to be programmatically oriented with unrepl. Unrepl only works on Clojure, so for ClojureScript we use other techniques. Also, socket repl is a stream protocol, so to emulate a “request-response”, we need to coordinate things so Atom (and other editors) can react to commands and know exactly what’s the correct response for each command sent.

Design decisions

The choice for UNREPL was mostly because there is almost no documentation about prepl so far. Also, Socket REPL is literally everywhere: on Clojure , on ClojureCLR, on Lumo and Plank. Also, I wanted a better way to use ClojureScript, and I still have nightmares trying to use it over nREPL… and with Socket REPL things work fine.

Also, when I started the project Clojure 1.10 was just alpha software, and UNREPL offers us insanely good support for lazy lists, big strings, and other things that I wanted to use out of the box. One of the problems I’m still facing is coordination of evaluate/response, but this will probably be solved after a bunch of other fixes I’ll try.
(more…)

The perfect programming language (for me)

Disclaimer: the perfect programming language does not exist. Even if it did, different people want different things, so probably the ideas in this post would not reflect the ideas from different people. With that being said, let’s start with a little background:

I usually prefer dynamic languages. There are also moments when I miss static typing, but most of the time the “code/solution exploration” and a good REPL (and code design) do the job of reasoning about the shape of my data.

Except when it doesn’t. Then, things get ugly. Real fast. There’s always bad code that you need to work with, even one that you wrote about six months ago, and now you’re dumbfounded, looking at the code trying to remember what the hell were you thinking when you wrote the code and why you did think it was a good idea to wrote it that way at all. It happens with everyone. And that’s when static typing can (and will) help: it reasons about your data. You can have a variable named a, but at least you know it have the fields b: String, c: Int, whatever that means. But it helps.

Maybe we could have a language that allows you to turn on/off the typing whenever you wanted? With better REPL support? So, this would be my dream language to work with.
(more…)

My fading frustration with ClojureScript

I’ve talked about at another post on how ClojureScript frustrates me, mostly because I was doing some Node.JS work and Figwheel simply wasn’t working correctly. Now, it’s time to revisit these points:

A little update: I talked a little with Thomas Heller, Shadow-CLJS creator, and he pointed me some issues with this article, so I’ll update it acordingly

Tooling

Figwheel and Lein are not the best tools to work with ClojureScript. Since I discovered shadow-cljs, things are working way better than before: I can reload ClojureScript code from any target, and I’m even experimenting with Hubot (and it works really fine too). The only thing I’m missing is my profiles.clj file, but I can live with that (and I can always use Shadow with Lein if I need profiles.clj).

Also, I’m working on a new package for Atom (and in the future, for another editors too) called Chlorine. One of the ideas is to offer better ClojureScript support (we have Autocomplete now!), using Socket REPL for solutions (even self-hosted REPLs like Lumo and Plank) and even wrap UNREPL protocol in Clojure. So far, is still in the very beginning but things are looking promising!

The stack

Forget Figwheel at all: Shadow-CLJS is probably the best tooling for ClojureScript ever. It auto-reloads ClojureScript code for the browser, for node.js, for node modules, and it integrates with almost everything that you want. It controls release optimizations, have sensible defaults, and even have post-compile hooks (so you can hook Clojure code to do something after some compilation phases). Also, it integrates with node-modules (no more maven-wrappers for JS libraries!) and have some warnings when you use some kind of ClojureScript code that would break :advanced compilation. And, let’s not forget that you can control the refresh reload phase, it adds a userful :include-macros in ns form (that will include all macros from the namespace being required), and controls exports in a sane manner. But first let’s begin with the feature that I found most useful: :before-load-async.
(more…)

Atom packages with ClojureScript – upgraded

Last time I talked about plug-ins in atom with ClojureScript, I was using Weasel. Since then, I tried figwheel but it never worked as good as I wanted.

Then, I’ve decided to try shadow-cljs. Also, with shadow, we can build a node library instead of a “generic node application”, and this helped a lot in my current tests. So, right now, I’m going to show how I am developing the next version of Clojure Plus plug-in, and what to expect in the future.

Also, I must add that this is so far the best experience ever on creating Atom packages, so I’ll probably stick with ClojureScript for every future package too (I just need a way to make atom’s spec tests work better with ClojureScript – I’m thinking about using a helper library or something).

Preparation

First, you’ll use atom to create a package. It doesn’t matter if you produce a CoffeeScript or Javascript version, because we’ll delete all source files.

On package.json, we’ll modify the entrypoint: on the key "main":..., we’ll write "main": "./lib/main".
(more…)

Clojure with SQL databases

There are times when a specific piece of technology captures my attention in such a way that I feel the need to study more, and do things with it. Since I began to study Clojure, and after two jobs working with it, I’m still in love with it – I think it matches what I expect in a language most of the time, and also matches my repl-driven-development workflow.

So why I’m not considering it for new projects? Even personal ones?

When I need to prototype something really fast, I end up going for Ruby, with Sinatra (sorry rails, but you’re a terrible choice for me). I saw that in my last project, I worked with Sequel, postgresql, and Sinatra. For tests, I used VCR and recorded the external api calls that I had to make.

Well, I could probably prototype a simple VCR that would record a specific function call in Clojure. Sinatra, I could use Compojure. As for Sequel… Or ActiveRecord, for that matter…

There are a few libraries that can be used to communicate with SQL: Korma, that doesn’t support select ... for update and have some implicit connection problems and other issues, HoneySQL that interprets Clojure maps and converts then to SQL, and lots of other libraries that simply ask you to write your query and then, somehow, call then for you. I didn’t care too much for the later, after all, if I want to write queries I prefer to not depend on a library that does it to me – I know that there are people that don’t like to have SQL in the middle of the code, but I don’t see any problem with it.
(more…)

Two new libraries in Clojure

Last week, I was looking to some old code I wrote in my last job and my spare time. Then, I’ve decided to publish two new libraries for Clojure and ClojureScript.

One is Paprika, available in Clojars at version 0.1.0-SNAPSHOT.

The other is Check, also available in Clojars (but at version 0.0.1-SNAPSHOT).

The reason for the early publishing is to push forward some simple libraries to fix a simple problem that I had while working with Clojure: the absence of abstractions.
(more…)

Clojure, reflection, and performance/memory issues

Right now, I’m working in a game project in Clojure. I don’t really know how it will turn out, but for now I’m just trying to learn a better way of making games.

While working in this project, I found out that my game was consuming a lot of memory. I’m using play-clj library, and I know that it creates a lot of small objects for each render cycle, so that was my first guess.

So, I plugged in a VisualVM in my running game to understand what was happening. In the beginning, nothing seemed to make sense: the heap grew, then was released, the correct and normal cycle of any Java application. Then, I tried a memory profiling and a memory dump. Then, things became interesting.

There were a lot of float[] objects popping up, as I would expect – play-clj uses floats to position elements on the screen, and all the time I found myself trying to coerce doubles to floats. But there was something even stranger there was consuming a lot of memory: instances of java.lang.Method.

For those who don’t know, Clojure interoperability with Java relies on reflection when it can’t resolve a type. To resolve a type means that Clojure can be certain that, at run time, that a specific identifier will be a specific type. So, for the following code:

(ns example.core)

(defn sum-abs [a b]
  (Math/abs (/ a (float b))))

(defn only-abs [a]
  (Math/abs a))

The first method call will use reflection because it knows that the result of a sum will always be a float. The second one has no idea if it will be called with a number or not, so it relies on reflection. It may seem strange, as we’re calling Math/abs, but remember that in Java we can have different methods with the same name, differing only on type signature.

So, to resolve the type, we’ll need type hints. But first, we can test if our code is using reflection using lein check.
(more…)

Atom Packages with ClojureScript

One of the best things in Clojure (and ClojureScript) is that you can design your code connected in a live environment – so, your auto-complete abilities reflect exactly what’s running right now. Then, you can evaluate code with real data, to catch bugs or just test things. Then comes Atom, an editor that, in my opinion, is one of the easiest editors to create plugins (packages), using technologies we already know – mostly, HTML, CSS, and JavaScript. To program with Clojure, you can use proto-repl – an awesome package that, combined with ink, allows us to run clojure code and display right on the editor, Light Table style.

But then I became greedy and wanted more. I created clojure-plus, a package that extends proto-repl to be able to work with multiple projects, specially when these projects are not configured to be “refresh-friendly” or something. Most of the things I have in clojure-plus are simple helpers that I found missing in proto-repl, at least in the beginning.

But, after that, I began to work professionally with Clojure. And then, most of the projects had some kind of “strangeness”, mostly because everyone was using InteliJ with Cursive – a lot of people I knew didn’t even run the code, with exception of midje tests. So, I changed my package to work around these “strangeness”, and after a while, I saw that I was creating a big mess of code. Then, came ClojureScript support, and things became even more complicated… so, came the idea to port my package to ClojureScript, and after trying several things (Figwheel, Ajom, and other packages) I discovered that they could not solve my problems. The only one that worked, with restrictions, was Weasel, but then with some hacks things worked fine. So, here are the steps to make things work:
(more…)