Don’t be a Copperfield

After a year and a half working in other languages, I’m back to Ruby. And, one of the things that I was amazed at Clojure is how simple things were.

Back to Ruby, I’m really surprised on how people overcomplicate things.

There’s no perfect language, nor perfect community of languages. In Clojure, there are fewer abstractions, which is not exactly a good thing – if you, let’s say, just want to create a simple page to show data from a database, you’ll find it extremely tedious to do it in Clojure, where in Ruby/Rails it’s just a few lines of code away. Ruby’s moto is “programmer happiness”, and this reflects in every library that they write.

But this kind of higher abstraction pays off with time. At least where I live, working with Ruby means working with Rails almost all the time. There are no “big competitions” for Rails or ActiveRecord (Sequel is a close one, but at the time of this post, AR have 10 times more downloads than Sequel), and other web frameworks are mostly “Rails-like”. But what bugs me most is “magic”.
(more…)

Two new libraries in Clojure

Last week, I was looking to some old code I wrote in my last job and my spare time. Then, I’ve decided to publish two new libraries for Clojure and ClojureScript.

One is Paprika, available in Clojars at version 0.1.0-SNAPSHOT.

The other is Check, also available in Clojars (but at version 0.0.1-SNAPSHOT).

The reason for the early publishing is to push forward some simple libraries to fix a simple problem that I had while working with Clojure: the absence of abstractions.
(more…)

There’s a little Haskell in your Javascript

This may seem a little strange, but althrough Javascript is a dynamic language, with very loose typing (automatic convertions, equals signs that only works on arrays/numbers/undefined/nil), lots of things that are “falsy” by default, with the new promise-based approach of Javascript, the language is borrowing some very interesting concepts from Haskell.

And yes, this is a great thing. And yes, this will probably change the way we program.

Let’s begin by talking about Javascript, and its new features. Old async-javascript code was probably like this:

some_io_function(function(result) {
  find_name_in_db(result.person_id, function(name) {
    console.log(name);
  })
});

Now, it’s like this:

some_io_function()
  .then((result) => find_name_in_db(result.person_id))
  .then(console.log)

And, with new ES6 features:

async () => {
  var result = await some_io_function();
  var name = await find_name_in_db(result.person_id);
  console.log(name)
}

Now, what does this have to do with Haskell? Multiple things, but the most important: Functors!
(more…)

Stop disrespecting my job!

This will be a bit of a rant-sorry.

I work as a software developer. This means lots of things – the most obvious is that I create and develop softwares. I can’t think of myself as an “IT Analyst”, because I don’t just “analyze” software, and I don’t think of myself as a “Programmer” because I do more things than only program. Also, I don’t like my last two job titles “Software Engineer”, mostly because I associate Computer Engineering with calculus and digital signal processing and neural networks and such. Also, I think that here, at Brazil, people like the “Engineer” status, and I’m don’t care for titles and such – I’m more interested with knowledge and abilities more than anything.

That being said… when I search the internet to find a job, sometimes I find: “We’re searching for computer Jedis/Ninjas”; “If you’re a master of the computer arts, please apply for…”; or the innocent looking “we’re not looking for someone to work, we’re looking to someone to have fun with us while we create a great product”.

So, let’s start by the beginning: I am a professional Software Developer looking for a job. This needs to be clear, and it’s nothing better or worse than that. I’m not a Jedi – sorry to be the one with the bad news, but Jedi doesn’t exist (sorry UK, I know at some time in the past you recognized Jedi as a valid religion). Ninjas do exist, but their primary concern is not software… and yes, I studied a little of Ninjutsu (Bujinkan school) as a martial art, but I’m no ninja (I did not graduate – in fact, I did so little that I wasn’t illegible to even make the test).

We spent years trying to get rid of the title computer boy. Why do we, now, allow ourselves to be called of something we are not? Just because it’s cool to be a Jedi or a Ninja?
(more…)

Clojure, reflection, and performance/memory issues

Right now, I’m working in a game project in Clojure. I don’t really know how it will turn out, but for now I’m just trying to learn a better way of making games.

While working in this project, I found out that my game was consuming a lot of memory. I’m using play-clj library, and I know that it creates a lot of small objects for each render cycle, so that was my first guess.

So, I plugged in a VisualVM in my running game to understand what was happening. In the beginning, nothing seemed to make sense: the heap grew, then was released, the correct and normal cycle of any Java application. Then, I tried a memory profiling and a memory dump. Then, things became interesting.

There were a lot of float[] objects popping up, as I would expect – play-clj uses floats to position elements on the screen, and all the time I found myself trying to coerce doubles to floats. But there was something even stranger there was consuming a lot of memory: instances of java.lang.Method.

For those who don’t know, Clojure interoperability with Java relies on reflection when it can’t resolve a type. To resolve a type means that Clojure can be certain that, at run time, that a specific identifier will be a specific type. So, for the following code:

(ns example.core)

(defn sum-abs [a b]
  (Math/abs (/ a (float b))))

(defn only-abs [a]
  (Math/abs a))

The first method call will use reflection because it knows that the result of a sum will always be a float. The second one has no idea if it will be called with a number or not, so it relies on reflection. It may seem strange, as we’re calling Math/abs, but remember that in Java we can have different methods with the same name, differing only on type signature.

So, to resolve the type, we’ll need type hints. But first, we can test if our code is using reflection using lein check.
(more…)

We need a better way to write SQL

For some time now, we’ve been working with SQL to communicate with database systems. What we learned in these years is that SQL is not a good way to query data, and I’m going to explain why.

SQL should be a standard way of querying data, but most programmers have learned (probably the hard way) that most of databases implement SQL in a different way. What is means in practice is that any time we need to change databases we will face lots of incompatibilities and queries that simply won’t work as we expect. But this is only the beginning of our problems…

We tried lots of ways to solve this kind of problem, one of them migrating to ORMs. But, ORMs in fact solve a different problem – the one that relational databases work with row-column structures, and our programming languages use objects, hash-maps, records, and other richer ways of representing data. Ruby’s ActiveRecord was a huge step forward, promising us to deliver value simplifying our relational-object mapping, but in the end we faced the same problems – incompatible queries, SQL fragments being thrown in the code, and in the end, we ended up with another huge kind of problems – performance, complexity, and separation of concerns problems (a single ActiveRecord mapping is responsible for validation, for queries, and to define business logic). Even worse, the Arel promise (a complete library to abstract every possible SQL query) was underused – it’s now an internal library to ActiveRecord, it doesn’t really have a stable public API, and in every minor version, something changes in a bizarre and incompatible way.

So, I’ve started a simple project named relational. In the beginning, it was just a playground to learn Scala. But, right now, and faced with modern problems (I’m working with Clojure, and it doesn’t really have a good way to query relational databases – Korma is incomplete in multiple ways, HoneySQL doesn’t really delivers what I want, and other libs are just wrappers around string queries), I’m implementing a version of Relational in Clojure, and the reason I’ve started working on it is kinda simple…

SQL isn’t a standard.

Okay, if we just want to query all data from a single database, inner-joining with other, just listing the fields, it’s completely fine. Add SQL functions and pagination, and we’re in a pinch – for instance, the standard way of limiting the result to just 100 rows is:

SELECT * FROM table FETCH FIRST 100 ROWS ONLY

I don’t know a single person who wrote this kind of query, simply because almost no database supports the standard – in PostgreSQL, MySQL and Sqlite, it’s written as:

SELECT * FROM table LIMIT 100

In Oracle, it is

SELECT * FROM table WHERE rownum < 100

In Microsoft SQL Server, it is

SELECT TOP 100 * FROM table

And don't even start with GROUP_CONCAT or other strange SQL functions…
(more…)

Atom Packages with ClojureScript

One of the best things in Clojure (and ClojureScript) is that you can design your code connected in a live environment – so, your auto-complete abilities reflect exactly what’s running right now. Then, you can evaluate code with real data, to catch bugs or just test things. Then comes Atom, an editor that, in my opinion, is one of the easiest editors to create plugins (packages), using technologies we already know – mostly, HTML, CSS, and JavaScript. To program with Clojure, you can use proto-repl – an awesome package that, combined with ink, allows us to run clojure code and display right on the editor, Light Table style.

But then I became greedy and wanted more. I created clojure-plus, a package that extends proto-repl to be able to work with multiple projects, specially when these projects are not configured to be “refresh-friendly” or something. Most of the things I have in clojure-plus are simple helpers that I found missing in proto-repl, at least in the beginning.

But, after that, I began to work professionally with Clojure. And then, most of the projects had some kind of “strangeness”, mostly because everyone was using InteliJ with Cursive – a lot of people I knew didn’t even run the code, with exception of midje tests. So, I changed my package to work around these “strangeness”, and after a while, I saw that I was creating a big mess of code. Then, came ClojureScript support, and things became even more complicated… so, came the idea to port my package to ClojureScript, and after trying several things (Figwheel, Ajom, and other packages) I discovered that they could not solve my problems. The only one that worked, with restrictions, was Weasel, but then with some hacks things worked fine. So, here are the steps to make things work:
(more…)

Configurando Clojure com Atom

Bom, numa postarem anterior eu mostrei meu workflow com Clojure e Atom. Nesse post, farei um passo a passo bem mais detalhado.

A primeira coisa a se fazer é instalar, no sistema operacional, o Java SDK e o Leiningen. Isso torna possível rodar Clojure e ClojureScript no sistema operacional. Agora, vamos ao Atom.

As novas alterações do meu plug-in clojure plus trazem um suporte preliminar a ClojureScript também, usando o piggieback. Na verdade, qualquer biblioteca é possível, já que o plug-in permite que você defina um comando que abriria um console ClojureScript. Mas mais sobre isso mais tarde.

Atom e Profiles

Dentro do Atom, instale o proto-repl, clojure-plus, lisp-paredit e clojure-language. O primeiro plug-in faz a ponte entre o clojure e o editor, o segundo traz funcionalidades interessantes, o terceiro faz edição estrutural (se você quiser, claro), mas principalmente corrige a indentação de código Clojure quando se digita enter (o Atom tem uma regra genérica que não funciona em LISPs).

Enquanto esses plug-ins instalam, é hora de configurar seu profile. Em Clojure usando Leiningen (ou lein para os íntimos – demora muito digitar o nome completo) há um arquivo de profiles em seu diretório home. Esse arquivo define bibliotecas e plug-ins que sempre ficarão ativos em qualquer circunstância e em qualquer código que se esteja digitando. Desnecessário dizer quão poderoso é isso, certo? Basicamente, bibliotecas ficam disponíveis para todos os projetos, mesmo os que não a usam, em qualquer circunstância. Aqui vale um pequeno desvio:

Em Clojure, há muitas bibliotecas que não servem exatamente para serem usadas no código – basicamente, o uso delas é refatorar código (como o refactor nrepl), debug (como o sayid), autocomplete (como o compliment), etc. O que vamos fazer é adicionar o refactor-nrepl e o proto-repl no projeto. O proto-repl, na verdade, é só o agrupamento do compliment e do clojure.tools.nrepl, então se você quiser pode adicionar essas bibliotecas individualmente (bom caso algum bug numa delas esteja corrigido numa versão mais recente).

O seu arquivo de profiles vai ficar dentro do diretório home, subdiretório .lein, no arquivo profiles.clj. Se nem o arquivo nem o diretório existirem, crie-os. Logo, seu arquivo /home/seu-usuario/.lein/profiles.clj ficaria assim:

{:user {:plugins [[refactor-nrepl "2.2.0"]]
        :dependencies [[slamhound "1.3.1"]
                       [proto-repl "0.3.1"]
                       [com.billpiel/sayid "0.0.10"]]}}

As dependências do slamhound e do sayid não tem uso ainda, mas estou pensando em integrá-las num futuro próximo ao clojure-plus, logo é bom mantê-las.

Nesse ponto, seu editor está pronto para ser usado. Você pode instalar também o plug-in parinfer, que infere parênteses a partir da indentação – muito útil, na minha opinião, mas devido a algumas semanticas provavelmente você vai querer usar o parinfer em conjunto com o paredit. Eu uso os dois juntos quando trabalho com Clojure.

Configuração dos plug-ins

Eu não gosto dos plug-ins que definem atalhos para mim, logo eu não defini nenhum atalho para o clojure-plus. O proto-repl, em compensação, define uma centena de atalhos, bem como o lisp-paredit. Eu costumo entrar em “View Installed Packages”, e dentro do proto-repl e do lisp-paredit eu removo os keybindings (de-selecionando o check Enable da área Keybindings de ambos os plugins). Agora, você provavelmente vai querer um atalho para mudar o modo “strict” do paredit, e atalhos para clojure. Então, abra seu arquivo de keymap, e vamos adicionar alguns. Nesse caso, eu vou adicionar keybindings compostos – “ctrl+espaço” vai ser o principal, e podemos usar outra tecla pra fazer o que queremos (ou seja, se você quiser se conectar no REPL, basta apertar “ctrl+espaço” e logo depois digitar “c”):
(more…)